Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

o-Chloro- and o-bromobenzonitrile: pseudosymmetry and pseudo-isostructural packing

Doyle Britton

Department of Chemistry, University of Minnesota, Minneapolis, MN 55455-0431, USA
Correspondence e-mail: britton@chem.umn.edu

Received 14 October 2006
Accepted 13 November 2006
Online 12 December 2006
The structures of o-chlorobenzonitrile, $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClN}$, (I), and o-bromobenzonitrile, $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{BrN}$, (II), have similar packing arrangements, even though $Z^{\prime}=4$ in (I) and $Z^{\prime}=1$ in (II). Both structures involve $X \cdots \mathrm{~N}$ interactions, as well as weak $\mathrm{C}-$ $\mathrm{H} \cdots X$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. The four crystallographically independent molecules in (I) are related by pseudosymmetry.

Comment

The structures of the title compounds, (I) and (II), have been determined as part of a series of studies on halogen-nitrile intermolecular interactions. Although many examples of $X \cdots$ NC intermolecular interactions are known, in o-iodobenzonitrile (Lam \& Britton, 1974) there are no I \cdots NC contacts, but short I \cdots I contacts are important. The question of interest was whether the same situation occurred with the lighter halogens.

Fig. 1 shows the atom labelling and displacement ellispoids for one of the four crystallographically non-equivalent molecules in (I), and for a molecule of (II). The displacement
ellipsoids in the remaining three independent molecules in (I) are similar. The bond lengths and angles are normal (Allen et al., 1987).

(I) $X=\mathrm{Cl}$
(II) $X=\mathrm{Br}$

Fig. 2 shows one view of the packing in (I). The four crystallographically independent molecules, A, B, C and D, are tilted by 25.8 (1), 25.4 (1), 23.9 (1) and 24.1 (1) ${ }^{\circ}$, respectively, with respect to (010). Fig. 3 shows a view of the packing in (II). The moleclules of (II) are all tilted by 27.5° with respect to the (100) plane. In both figures, the $X \cdots \mathrm{~N}$ interactions are shown as dashed lines. Geometric details are given in Table 1. The $\mathrm{Cl} \cdots \mathrm{N}$ distances are not shorter than the usual van der Waals distances but the $\mathrm{Br} \cdots \mathrm{N}$ distance is. The similarity in the geometries suggests that the same type of interaction is occurring in both cases. There are a number of $\mathrm{C}-\mathrm{H} \cdots X(X=$ N, Cl or Br) interactions which are not shown in the figures but are listed in Table 2. These are at about the normal van der Waals distances, but could be regarded as $\mathrm{C}-\mathrm{H} \cdots X$ hydrogen bonds. They are shown to emphasize the packing similarities

(a)

(b)
Figure 1
(a) Molecule A in (I); molecules B, C, and D are similar. (b) The molecule of (II). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2

The structure of (I), viewed along $b . X \cdots \mathrm{CN}$ contacts are shown as dashed lines.

Figure 3
The structure of（II），viewed normal to（100）．$X \cdots \mathrm{CN}$ contacts are shown as dashed lines．
between（I）and（II），and also to show the extent of the differences between the four independent molecules of（I）． There are $X \cdots X$ interlayer contacts separated by a in（I）and by b in（II）；none is closer than the usual van der Waals distance．

The similarity in the packing for（I）and（II）（see Figs． 2 and 3）suggests that there are pseudosymmetric relationships between the independent molecules in（I）．Closer inspection shows that this is，indeed，the case．The pseudo－conversions are shown in Table 3．As part of the pseudosymmetric rela－ tionship，the matrix（400／010／001）converts the cell in（I）to a nearly orthogonal cell，with $a^{\prime}=63.768(16) \AA, \simeq 4 a(\sin \beta)$ ， $b^{\prime}=b, c^{\prime}=c$ and $\beta^{\prime}=89.89(1)^{\circ}$ ．In this cell，the glide planes perpendicular to a^{*} are also perpendicular to a^{\prime} ．

Experimental

Both compounds were obtained from Aldrich Chemical Co．Inc．A crystal of（I）selected from the original sample and a crystal of（II） grown from an acetone solution were used for the data collection． Both（I）and（II），as well as the iodine analogue，were recrystallized from acetone，acetonitrile，benzene，dichloromethane，chloroform and carbon tetrachloride solutions in efforts to find additional poly－ morphs of the three compounds，but none was found．

Compound（I）

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClN}$	$Z=16$
$M_{r}=137.56$	$D_{x}=1.432 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic，$P 2_{1} / c$	Mo $K \alpha$ radiation $^{-1}$
$a=18.999(4) \AA$	$\mu=0.49 \mathrm{~mm}^{-1}$
$b=3.8410(8) \AA$	$T=174(2) \mathrm{K}$
$c=41.690(8) \AA$	Needle，colourless
$\beta=122.96(3)^{\circ}$	$0.40 \times 0.10 \times 0.10 \mathrm{~mm}$

Data collection
Bruker SMART 1K CCD area－ detector diffractometer
ω scans
Absorption correction：multi－scan （SADABS；Sheldrick，2003； Blessing，1995）
$T_{\text {min }}=0.91, T_{\text {max }}=0.95$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.102$
$S=1.03$
5797 reflections
325 parameters
H －atom parameters constrained

Compound（II）

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{BrN}$
$M_{r}=182.02$
Monoclinic，$P 2_{1} / c$
$a=3.9247$（10）\AA
$b=10.348$（3）\AA
$c=16.387$（4）A
$\beta=95.011(4)^{\circ}$ 。
$V=663.0(3) \AA^{3}$
Data collection
Bruker SMART 1K area－detector diffractometer
ω scans
Absorption correction：multi－scan
（SADABS；Sheldrick，2003；
Blessing，1995）
$T_{\text {min }}=0.15, T_{\text {max }}=0.30$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.051$
$S=1.07$
1518 reflections
83 parameters
H －atom parameters constrained

27524 measured reflections 5797 independent reflections 4186 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.052$ $\theta_{\text {max }}=27.5^{\circ}$

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.041 P)^{2}\right. \\
\quad+1.039 P] \\
\text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.26 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }= \\
\end{array}=0.32 \mathrm{e}^{-3}
\end{aligned}
$$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.824 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=6.10 \mathrm{~mm}^{-1} \\
& T=174(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.40 \times 0.30 \times 0.20 \mathrm{~mm} \\
& \\
& \\
& \\
& 7557 \text { measured reflections } \\
& 1518 \text { independent reflections } \\
& 1301 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.027 \\
& \theta_{\text {max }}=27.5^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.019 P)^{2}\right. \\
& +0.386 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.31 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.29 \mathrm{e} \mathrm{~A}^{-3} \\
& \text { Extinction correction: SHELXTL } \\
& \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.0049 \text { (8) }
\end{aligned}
$$

Table 1
A comparison of the geometry $\left(\AA,{ }^{\circ}\right)$ of the $X \cdots \mathrm{~N}$ contacts in compounds （I）and（II）．

For comparison，the van der Waals contact distances are $\mathrm{Cl} \cdots \mathrm{N}=3.30 \AA$ and $\mathrm{Br} \cdots \mathrm{N}=3.40 \AA$（Bondi，1964；Rowland \＆Taylor，1996）．

	$X \cdots \mathrm{~N}$	$\mathrm{C}-X \cdots \mathrm{~N}$	$X \cdots \mathrm{~N}$	$X \cdots \mathrm{~N} \equiv \mathrm{C}$
（I）	$\mathrm{Cl} 9 A \cdots \mathrm{~N} 8 B$	$169.0(2)$	$3.380(2)$	$92.2(2)$
	$\mathrm{Cl} 9 B \cdots \mathrm{~N} 8 C$	$146.2(2)$	$3.466(2)$	$94.0(2)$
	$\mathrm{Cl} 9 C \cdots \mathrm{~N} 8 D$	$170.2(2)$	$3.394(2)$	$87.8(2)$
	$\mathrm{Cl} 9 D \cdots \mathrm{~N} 8 A^{\mathrm{i}}$	$167.1(2)$	$3.477(2)$	$89.9(2)$
（II）	$\mathrm{Br} 9 \cdots \mathrm{~N} 8^{\mathrm{ii}}$	$170.4(2)$	$3.327(2)$	$90.5(2)$

Symmetry codes：（i）$x, \frac{1}{2}-y, \frac{1}{2}+z$ ；（ii） $1-x, \frac{1}{2}+y, \frac{1}{2}-z$ ．

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms，with $\mathrm{C}-\mathrm{H}$ distances of $0.95 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ ．

Table 2
A comparison of the geometries $\left(\AA,{ }^{\circ}\right)$ of the $\mathrm{C}-\mathrm{H} \cdots X$ interactions in (I) and (II), where $X=\mathrm{N}, \mathrm{Cl}$ or Br .

For comparison, the van der Waals contact distances are $\mathrm{Cl} \cdots \mathrm{N}=3.30 \AA$ and $\mathrm{Br} \cdots \mathrm{N}=3.40 \AA$ (Bondi, 1964; Rowland \& Taylor, 1996).

H	X	$\mathrm{C}-\mathrm{H} \cdots X$	H $\cdots X$	$\mathrm{H} \cdots X-\mathrm{C}$	C $\cdots X$
o-Chlorobenzonitrile, (I)					
H3A	$\mathrm{Cl} 9 \mathrm{C}^{\text {i }}$	138	3.03	97	3.788 (2)
H3A	$\mathrm{Cl} 9 \mathrm{C}^{\mathrm{ii}}$	144	3.10	119	3.908 (2)
H4A	$\mathrm{N} 8 D^{\text {ii }}$	161	2.68	164	3.592 (3)
H5A	$\mathrm{N} 8 D^{\text {iii }}$	141	2.71	121	3.496 (3)
H6A	$\mathrm{Cl} 9 D^{\text {iii }}$	143	3.17	98	3.969 (2)
H3 B	$\mathrm{Cl} 9 D^{\text {iv }}$	134	3.26	124	3.978 (2)
H3 B	$\mathrm{Cl} 9 D^{\text {v }}$	148	2.97	98	3.807 (2)
H4B	$\mathrm{N} 8 A^{\text {vi }}$	162	2.66	165	3.573 (3)
H5B	$\mathrm{N} 8 A^{\text {vii }}$	140	2.75	120	3.523 (3)
H6B	$\mathrm{Cl} 9 A^{\text {vii }}$	133	3.08	98	3.794 (2)
H3C	$\mathrm{Cl} 9 A^{\text {viii }}$	136	3.16	122	3.898 (2)
H3C	$\mathrm{Cl} 9 A^{\text {ix }}$	145	3.05	94	3.869 (2)
H4C	$\mathrm{N} 8 B^{\text {ix }}$	155	2.82	166	3.703 (3)
H5C	N8 $B^{\text {vii }}$	129	2.74	135	3.422 (3)
H6C	$\mathrm{Cl} 9 \mathrm{~B}^{\text {vii }}$	136	3.09	121	3.832 (2)
H3D	$\mathrm{Cl} 9 B^{\text {iv }}$	142	3.15	99	3.944 (2)
H3D	$\mathrm{Cl} 9 B^{\text {v }}$	145	3.29	121	4.107 (2)
H4D	$\mathrm{N} 8 C^{\text {iv }}$	146	2.62	158	3.443 (3)
H5D	$\mathrm{N} 8 C^{x}$	140	2.99	111	3.763 (3)
H6D	$\mathrm{Cl} 9 C^{\text {xi }}$	139	3.17	98	3.939 (2)
H6D	Cl 9 C	135	3.12	121	3.856 (2)
o-Bromobenzonitrile, (II)					
H3	$\mathrm{Br} 9^{\text {vi }}$	130	3.14	90	3.822 (2)
H3	$\mathrm{Br} 9^{\text {xii }}$	152	3.22	119	4.078 (2)
H4	N8 ${ }^{\text {xiii }}$	152	2.80	155	3.670 (3)
H5	$N 8^{\text {iv }}$	133	2.82	131	3.535 (3)
H6	$\mathrm{Br} 9^{\text {iv }}$	149	3.15	98	3.987 (2)

Symmetry codes: (i) $1-x,-\frac{3}{2}+y, \frac{1}{2}-z$; (ii) $1-x,-\frac{1}{2}+y, \frac{1}{2}-z$; (iii) $x,-\frac{1}{2}-y,-\frac{1}{2}+z$; (iv) $-x,-\frac{1}{2}+y, \frac{1}{2}-z$; (v) $-x, \frac{1}{2}+y, \frac{1}{2}-z$; (vi) $-x, 1-y,-z$; (vii) $x, 1+y, z$; (viii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z ;$ (ix) $1-x, \frac{3}{2}+y, \frac{3}{2}-z$; (x) $x,-1+y, z$; (xi) $x,-1+y, z$; (xii) $1-x, 1-y,-z$; (xiii) $-1+x, \frac{1}{2}-y,-\frac{1}{2}+z$.

Table 3
Pseudo-conversions for the four independent molecules of (I).

Conversion	Pseudosymmetry element	Approximate translation	Average discrepancy between corre- sponding atoms
$A \rightarrow B$	Screw axis parallel to c	$c / 8$	$0.16 \AA$
$A \rightarrow C$	c glide perpendicular to b	$c / 4$	$0.14 \AA$
$A \rightarrow D$	c glide perpendicular to a^{*}	$3 c / 8$	$0.13 \AA$
$B \rightarrow C$	c glide perpendicular to a^{*}	$c / 8$	$0.06 \AA$
$B \rightarrow D$	c glide perpendicular to b	$c / 4$	$0.23 \AA$
$C \rightarrow D$	Screw axis parallel to c	$c / 8$	$0.19 \AA$

For both compounds, data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ3046). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Lam, S. \& Britton, D. (1974). Acta Cryst. B30, 1119-1120.
Rowland, R. S. \& Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.
Sheldrick, G. M. (1997). SHELXTL. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.

